
Empirical Comparisons of Data Flow and Mutation

Testing

A. Je�erson O�utt

Department of ISSE

George Mason University

Fairfax, VA 22030

phone: 703-993-1654

email: ofut@gmuvax2.gmu.edu

Kanupriya Tewary

Department of Computer Science

Clemson University

Clemson, SC 29643-1906

kanu@cs.clemson.edu

December 1992

Abstract

Data 
ow and mutation testing are two powerful white box testing techniques for unit-level software

testing. Unfortunately, they cannot be completely compared on an analytical basis, for example, mutation

is incomparable on an inclusion basis with most data 
ow criteria. This paper shows that mutation

includes the All-defs data 
ow criterion, but is incomparable with other data 
ow criteria, and presents
results from two empirical comparisons of mutation with the All-uses data 
ow criterion. For the �rst

comparison, we de�ne a coverage measure that is used for the comparison. The coverage of data 
ow by

mutation is between 99% and 100%, which means that test data that satis�ed the mutation criterion also
satis�ed the data 
ow criterion in almost all cases. The coverage of mutation by data 
ow was between

80 and 90%. For the second comparison, we use test data that satisfy the two criteria to detect faults,

and compare the criteria on the basis of the faults found. The empirical evidence strongly indicates that
while data 
ow-adequate test sets are close to being mutation-adequate, mutation-adequate test sets are

almost invariably data 
ow-adequate.

1 INTRODUCTION

Mutation testing and data 
ow testing are two powerful unit testing techniques that have not been success-

fully compared on an analytical basis. Extensive research has been done to develop both techniques, and

although substantial technical problems remain to be solved for them to be used in practical situations, both

techniques o�er substantial potential for improving the testing process, resulting in higher quality software.

Both techniques are white box in nature [Whi87] and require substantial computational resources. Although

experience has led us to believe there is signi�cant overlap between the two techniques, they have not been

successfully compared on either an analytical or experimental basis. We attempt the comparison in three

steps. First we show that mutation includes one version of data 
ow testing (All-defs). Unfortunately, the

All-defs criterion is rather low on the data 
ow inclusion hierarchy as given by Rapps and Weyuker [RW85],

1



so this relationship is only of marginal value. Second, we compare mutation and the All-uses data 
ow

criterion on an experimental basis, to see whether either method covers the other in the sense of how close

test data that satis�es one technique comes to satisfying the other. Third, we compare mutation and All-uses

to see whether one demonstrates more fault detection ability than the other by executing faulty versions of

programs and comparing how many faults are found by test data that satis�es each technique.

Our results lead us to believe that while mutation o�ers more stringent testing that data 
ow, both

techniques provide bene�ts the other lacks. Our eventual goal is to �nd a way to test software that provides

the advantages of both techniques, either by combining the two techniques or by deriving a new technique

that o�ers the power of both mutation and data 
ow testing.

The remainder of this section includes a short discussion on the notion of test adequacy criteria, provides

an overview of mutation and data 
ow testing and reviews related research. Subsequent sections present our

analytical results, and discuss our experimental procedures and results.

1.1 Adequacy Criteria

There are two aspects of any testing method. The �rst is test data generation, which may be manual,

automated, or a combination of both. The second aspect of a testing method is the stopping rule, or

adequacy of the generated test data. The original de�nition of adequacy stated that a test set is adequate

if, for every fault in the program being tested, there is a test case in the test set that detects that fault

[DLS78, BA82]. Budd and Angluin de�ned adequacy with respect to a given criterion [BA82], and Frankl

and Weyuker [FW88] extended this to de�ne an adequacy criterion to be a predicate that is used to determine

when the program has been tested enough [FW88]. If a set of test data is adequate with respect to a certain

testing criterion and the program executes correctly on that test data, we are con�dent that our testing is

complete.

1.2 Data Flow Testing

Rapps and Weyuker [RW82, RW85] de�ne a family of data 
ow path selection criteria and examine the

relationships between them. Frankl and Weyuker [FW88] extend these de�nitions to apply to a large subset of

Pascal, and modify the criteria so that they satisfy the applicability property. A program unit P is considered

to be an individual subprogram (main program, procedure, or function). A subprogram is decomposed into

a set of basic blocks, which are maximal sequences of simple statements with one entry point such that if the

�rst statement is executed, all statements in the block will be executed. The subprogram is represented by

2



a control 
ow graph, CFG, in which the nodes are basic blocks and the edges correspond to possible 
ow of

control between the basic blocks.

A data de�nition of a variable is a location where a value is stored into memory (assignment, input,

etc.), and a data use is a location where the value of the variable is accessed. Uses are subdivided into 2

types: a computation use (c-use) a�ects a computation or is an output, and a predicate use (p-use) directly

a�ects the 
ow of control. c-uses are considered to be on the nodes in the CFG and p-uses are on the edges.

A de�nition-clear subpath for a variable X through the CFG is a sequence of nodes that does not contain a

de�nition of X.

Frankl and Weyuker de�ne seven data 
ow criteria. All-defs requires that for each de�nition of a variable

X in P , the set of paths � executed by the test set T contains a de�nition-clear subpath from the de�nition

to at least one c-use or one p-use of X. All-c-uses requires that for each de�nition of X in P , and each

c-use of X reachable from the de�nition, � contains a de�nition-clear subpath from the de�nition to all

reachable c-uses of X. All-p-uses requires that for each de�nition of X in P , and each p-use of X reachable

from the de�nition, � contains a de�nition-clear subpath from the de�nition to all reachable p-uses of X.

All-c-uses/some-p-uses requires that for each de�nition of X in P , if there exists at least one c-use of X

reachable from the de�nition, � contains a de�nition-clear subpath from the de�nition to at all reachable

c-uses of X, otherwise, � contains a de�nition-clear subpath from the de�nition to a reachable p-use of

X. All-p-uses/some-c-uses requires that for each de�nition of X in P , if there exists at least one p-use of

X reachable from the de�nition, � contains a de�nition-clear subpath from the de�nition to all reachable

p-uses of X, otherwise, � contains a de�nition-clear subpath from the de�nition to a reachable c-use of X.

All-uses requires that for each de�nition of X in P , � contains a de�nition-clear subpath from the de�nition

to all reachable c-uses p-uses of X. All-du-paths requires that for each de�nition of X in P , � contains all

de�nition-clear subpaths from the de�nition to all reachable c-uses of X and all reachable successors of a

p-use of X, such that each subpath contains no loops, or is one complete loop. All-paths requires that all

paths through the program be executed.

These testing criteria are all comparable based on the notion of inclusion, which has been de�ned by

Rapps and Weyuker as a measure of relative strength [RW85]. A criterion C1 includes another criterion

C2 i� for every program, any test set T that satis�es C1 also satis�es C2 [FW88]. In this hierarchy, All-

paths includes All-du-paths, All-du-paths includes All-uses, which in turn includes all other techniques. In

this paper, we show a relationship between mutation and All-defs, and present experimental results from a

comparison of mutation with All-uses. For this experimentation, we follow Frankl and Weiss [FW91] and

use the All-uses criterion, which provides a data 
ow criterion that is intermediate in the inclusion hierarchy.

3



One di�culty with applying data 
ow techniques is that of unexecutable subpaths. The de�nition-clear

subpaths that are used in data 
ow testing are based on the CFG, which is a static representation of the

program, and it may not be possible to execute all of the subpaths. Frankl and Weyuker [FW88] suggest

modi�cations to the data 
ow criteria so that they satisfy the applicability property. An adequacy criterion

C is applicable if and only if for every program P there exists some test set that is adequate for the criteria

and the program [Wey86]. An applicable criteria excludes subpaths that cannot be executed. Unfortunately,

it is undecidable whether a particular set of subpaths is executable, so recognition of unexecutable subpaths

is typically done by hand.

1.3 Mutation Testing

Mutation testing is a fault based testing technique introduced by DeMillo et al. [DLS78]. Mutation testing

is based on the assumption that a program will be well tested if all simple faults are detected and removed.

The coupling e�ect [DLS78, O�92] states that complex faults are coupled to simple faults in such a way that

a test data set that detects all simple faults in a program will detect most complex faults.

Simple faults are introduced into the program bymutation operators. Each change ormutation produced

by a mutation operator produces a mutant program or simply, a mutant. A mutant is killed by a test case

that forces it to produce incorrect output. A test case that kills a mutant is considered to be e�ective at

�nding faults in the program, and the mutant(s) it kills are not executed against later test cases. Equivalent

mutants are mutant programs that are functionally equivalent to the original program and therefore cannot

be killed by any test case. Like unexecutable subpaths, determination of equivalent mutants is usually done

by hand. The goal of mutation is to �nd test cases that kill all non-equivalent mutants; a test set that does

so is adequate relative to mutation.

1.4 Review of Related Work

Although there has been much informal discussion on the relative strengths of mutation and data 
ow testing,

we know of only two attempts to compare the two techniques. Budd compared mutation with data 
ow

testing on an intuitive basis [Bud81]. He suggested that mutation is a stronger testing technique because it

makes erroneous data 
ow possibilities emerge as non-equivalent mutants. An attempt to kill these mutants

forces the data 
ow criterion to be satis�ed. No theoretical or experimental evidence was provided to support

these arguments.

A later study was done by Mathur [Mat91]. He conducted an experimental comparison of All-du-pairs

4



with mutation testing, by having students in a class generate test data by hand to satisfy both criteria and

compare the scores. They used one set of test cases per program and did not record equivalent mutants and

unexecutable subpaths. These experiments indicated that mutation-adequate test data was closer to being

data 
ow-adequate than data 
ow-adequate test data was to being mutation-adequate.

2 INCLUSION RELATIONSHIP

By Frankl and Weyuker's de�nition, a criterion C1 includes another criterion C2 i� for every program, any

test set T that satis�es C1 also satis�es C2 [FW88]. This is similar to the de�nition of subsumption given

by Clarke et al.: A criterion C1 subsumes a criterion C2 i� every set of execution paths P that satis�es C1

also satis�es C2 [CPRZ85]. Here, we will use the later de�nition of inclusion.

The All-defs data 
ow criterion requires that each de�nition of a variable reach at least one use. Although

mutation testing does not explicitly have this requirement, the requirement is met implicitly through the svr

mutation operator. The sdl operator (statement deletion) deletes each statement in the program. To show

inclusion, we restrict our attention to only statements that contain variable de�nitions. Assume that M1 is

an sdl mutation that deletes statement Si with a de�nition of a variable X. To kill M1, a test case t must

1) cause the mutated statement to be reached (reachability), 2) cause the execution state of the program

after execution of Si to be incorrect (necessity), and 3) cause the �nal output of the program to be incorrect

(su�ciency) [DO91]. For this mutant, the necessity condition is trivial, since by deleting the statement, X is

no longer assigned the value. For the �nal output of the mutant to be incorrect, there are two cases. First,

if X is an output variable, t must have caused an execution of a subpath from the deleted de�nition of X to

the output without an intervening de�nition. Since the output is considered a use, this satis�es the criterion.

Second, if X is not an output variable, then the nonde�nition of X at Si must result in an incorrect output

state. This is only possible if X is used at some later point during execution without being rede�ned. Thus,

t will satisfy the All-defs criterion for the de�nition of X at Si, and the sdl mutation operator ensures that

mutation subsumes All-defs.

3 COMPARISON MEASURES

The method of comparison used in this experiment was to generate test data that satis�ed one criterion and

then measure how close it came to satisfying the other criterion. We de�ne coverage as the amount by which

test data that is adequate with respect to criterion A satis�es criterion B. Thus coverage of criterion A by

5



criterion B is 100% if and only if test data that is adequate for criterion A is also adequate for criterion B.

More formally, let A and B be two adequacy criteria, and FA(T ) and FB(T ) be the functions that measure

whether a test set T is adequate for the criteria. Let TA be a set of test data that is adequate with respect

to criterion A and TB be a set of test data that is adequate with respect to criterion B. Then the coverage

of criterion A by criterion B is FA(TB) and the coverage of criterion B by criterion A is FB(TA). Since a

criterion covers itself, FA(TA) = 100% and FB(TB) = 100%.

In our experiment, we compare the adequacy criteria for mutation and data 
ow testing. As indicated

in the previous section, a test set is mutation adequate if it succeeds in killing all non-equivalent mutants.

Our coverage measure for mutation is the mutation score, which is de�ned as follows. Let Mt be the total

number of mutants generated for a program, Mk be the number of mutants killed by a set of test cases

T , and Mq be the number of equivalent mutants for the program being tested. Then the mutation score

MS(P; T ) of test set T for program P is:

MS(P; T ) =
Mk

Mt �Mq

: (1)

We de�ne a similar measure for the data 
ow adequacy of a test set. A test set is data 
ow adequate

for the All-uses criterion if it executes all DU-pairs. We de�ne the data 
ow score of a test set as follows.

Let Dt be the total number of DU-pairs for the program being tested, Ds be the number of DU-pairs that

have been satis�ed by the test set and let Di be the number of DU-pairs that can never be satis�ed due to

the presence of unexecutable subpaths in the program. Then the data 
ow score DFS(P; T ) of test set T

for program P can be computed as follows:

DFS(P; T ) =
Ds

Dt �Di

: (2)

The mutation score of a test set that is data 
ow adequate will give us the coverage of mutation by

data 
ow. Similarly, the data 
ow score of a test set that is mutation adequate will give us the coverage of

data 
ow by mutation. For our experiment, if the mutation criterion is denoted by M and the data 
ow

criterion is denoted by D then FM is a function that computes the mutation score for a set of test data using

Equation 1 and FD is a function that computes the data 
ow score for a set of test data using Equation 2.

We compute values of FM(TD) and FD(TM ) for each program in our sample set over several test case sets.

6



4 EXPERIMENTAL PROCEDURE

This experiment was conducted on �ve subroutines. Since both mutation and data 
ow testing are primarily

unit testing techniques, we felt that this experiment should (at least initially) be performed at the unit

level. This study also involved a signi�cant amount of hand-analysis (determining equivalent mutants and

unexecutable subpaths), which would be di�cult for larger, integrated subsystems. Four of these programs

were square root calculation programs. bisect calculates the square root of a number using the method

of interval bisection, newton uses Newton's method, secant uses the modi�ed linear interpolation method

and regula uses the regula falsi method [GW85]. The square root programs were chosen because their

C-language versions were available and could therefore be used with the data 
ow testing tool. The �fth was

the classic trityp, which inputs three integers that represent the relative lengths of the sides of a triangle

and classi�es the triangle as equilateral, isosceles, scalene or illegal.

We used three tools for our experimentation. The Mothra mutation system automates the process of

mutation testing by creating and executing mutants, managing test cases, and computing the mutation

score. Mothra uses twenty-two di�erent mutation operators [KO91] (listed in Appendix A). All �rst order

mutants were enabled for this experiment. To generate test data to satisfy mutation, we used Godzilla, an

automated constraint-based test case generator that is integrated with Mothra [DO91]. For the data 
ow

analysis part of the experiment we used Combat, a data 
ow tool for C programs developed at Clemson

University [HK92]. Combat is a compiler based tester for unit testing of C procedures on Sun-4 machines.

The data 
ow criteria supported are All-Nodes, All-Edges, All-Defs and All-Uses. There is no test data

generation tool associated with Combat and all test data must be generated manually.

The experiment was carried out in the following steps:

Step 1 Preparation of sample programs

Step 2 Determination of equivalent mutants

Step 3 Determination of unexecutable subpaths

Step 4 Generation of mutation adequate test sets

Step 5 Generation of data 
ow adequate test sets

Step 6 Computation of mutation score for each data 
ow adequate test set

Step 7 Computation of data 
ow score for each mutation adequate test set

Step 8 Analysis of results

7



4.1 Program Preparation

Since Combat tests C programs and Mothra tests Fortran-77 programs, we needed two versions of each test

program. The �rst step in program preparation was to translate each of the square root programs (which

were in C) to Fortran. The translations had to be as direct as possible, and whenever structural modi�cations

had to be made to the program for the translation, we �rst modi�ed the C version before translating. For

example, some of the C programs used the trinary operator (?), which does not exist in Fortran, so the C

versions were rewritten to eliminate use of this operator.

4.2 Determination of Equivalent Mutants and Unexecutable Subpaths

The determination of equivalent mutants was by far the most time consuming step in the experiment. The

four square root programs used real numbered variables. and each program required two inputs, the number

whose square root was to be determined and the precision. We used Godzilla to generate test cases to kill

as many mutants as possible for each program (Godzilla was able to kill between 80.8% and 86.8% of the

mutants), then used hand analysis to either determine that the rest were equivalent, or created additional

test cases that would kill them.

The determination of unexecutable subpaths in the C versions of the test programs was carried out using

Combat. Combat provides a control 
ow graph of the program being tested and this aids in the manual

generation of test cases as well as the inspection of the program to identify infeasible or unexecutable paths.

In addition to the control 
ow graph provided, complete coverage information of a test case can be obtained

after each run. None of the square root programs had any unexecutable subpaths. The number of executable

statements, the total and equivalent number of mutants, and the total and unexecutable number of DU-Pairs

for these programs are shown in Table 1.

UNEXECUTABLE EQUIVALENT
PROGRAM STATEMENTS DU-PAIRS DU-PAIRS MUTANTS MUTANTS
bisect 22 83 0 511 62
newton 14 62 0 394 48
secant 17 78 0 694 84
regula 19 105 0 661 52
trityp 28 178 24 951 109

Table 1: Experimental Programs

8



4.3 Generation of Mutation and Data Flow Adequate Test Sets

To avoid any bias that could be introduced by a particular set of test cases, we generated 5 separate test sets

for each program and both criteria. The mutation-adequate test sets were generated automatically using

Godzilla and when necessary, augmented by hand, and the data 
ow-adequate test sets were generated by

hand. We consider a minimum test case set for a criterion to contain the smallest number of tests necessary

to satisfy the criterion, and a minimal test case set to be a satisfying set such that if any test case was

removed, the set would no longer satisfy the criterion. We eliminated redundant test cases until we had

minimal test sets, but did not attempt to create minimum sized test sets.

The regula program required a huge amount of computation time for one particular test case that

eventually killed a large number of mutants. The test case took a little over 240 clock hours to execute

due to the nature of the iterative loop in regula and the fact that the input error margin (epsilon value)

for this test case was extremely small. Due to time constraints we could not repeat the application of this

particular test case in all �ve trials. For this reason we generated only one 100% mutation adequate test set

for regula. For the other four test sets we �rst generated as many test cases as possible using Godzilla (

the same procedure as for the other experimental programs) and then for the adequacy calculations added

the "strong" test case mentioned above, that killed the rest of the mutants.

Table 2 gives the average number of test cases for the mutation adequate test sets and the data 
ow

adequate test sets for each program. The most obvious observation is that in most cases, mutation requires

many more test cases than does data 
ow. Weyuker [Wey90] discusses comparing the costs of testing criteria

based on the number of test cases. With the ability to automatically generate test data, this cost is less

important during initial testing, but may become still be important during regression testing.

Mutation Data Flow
Program Adequate Adequate
bisect 26.6 5.8
newton 26.0 5.4
secant 25.5 4.4
regula 23.0 23.8
trityp 48.2 23.2

Table 2: Average Number of Test Cases Per Set

9



Test Set Test Set Test Set Test Set Test Set
Program 1 2 3 4 5 Average
bisect 92.20 92.20 92.20 87.08 91.09 90.95
newton 75.72 81.79 81.79 89.88 81.50 82.14
secant 79.34 78.50 80.66 80.00 83.27 80.35
regula 87.52 86.86 88.01 88.01 86.04 87.29
trityp 90.86 88.24 91.33 88.24 86.10 88.95

Table 3: FM(TD):Mutation Scores for Data Flow Adequate Test Sets

4.4 Coverage Measurements

We computed the coverage measurements by calculating the mutation scores of each of the 5 data 
ow-

adequate test sets and the data 
ow scores of each of the 5 mutation-adequate test sets. The programs

were run on a Sun 4 (SPARC workstation) running SunOS version 4.1.1. The mutation scores of the data


ow-adequate test sets are shown in Table 3. The scores for each of the �ve test sets are shown, as well as

the average mutation scores.

The data 
ow scores of the mutation-adequate test sets are shown in Table 3. The scores for each of

the �ve test sets are shown, as well as the average data 
ow scores. The mutation adequate test sets were

data 
ow adequate for all except the regula program. For three out of �ve trial runs for this program, the

same DU-pair was not satis�ed.

Test Set Test Set Test Set Test Set Test Set
Program 1 2 3 4 5 Average
bisect 100.00 100.00 100.00 100.00 100.00 100.00
newton 100.00 100.00 100.00 100.00 100.00 100.00
secant 100.00 100.00 100.00 100.00 100.00 100.00
regula 100.00 99.04 99.04 99.04 100.00 99.42
trityp 100.00 100.00 100.00 100.00 100.00 100.00

Table 4: FD(TM ):Data Flow Scores for Mutation Adequate Test Sets

In addition to the information provided by the number of mutants killed by the data 
ow adequate test

sets, it is interesting to note the mutants left alive. Table 5 shows the percentage of live mutants of each type

after the application of data 
ow adequate test sets. The mutation operators used by Mothra are listed in

Appendix A and are described in detail by O�utt and King [KO91]. 12 of the 22 operators used by Mothra

are represented in Table 5; 9 of the other 10 operators generated no mutants for these programs, and the

other operator generated only 12 mutants for trityp that were easily killed.

Unfortunately, the mutants left alive in Table 5 do not allow any generalizations about the type of

mutants that will not be handled by data 
ow adequate test sets. They are quite evenly distributed over

10



aor abs crp csr lcr ror san scr sdl src svr uoi SUM
bisect 4.7 10.8 31.3 8.0 28.6 17.6 0.0 2.4 8.3 9.1 10.9 21.8 153.5
newton 12.3 7.8 48.0 6.1 22.8 27.1 6.6 11.0 17.5 13.3 24.4 38.6 235.5
secant 9.0 30.5 63.6 15.1 38.1 25.7 0.0 14.7 2.0 66.0 12.8 23.7 301.2
regula 22.0 33.8 0.0 0.0 7.1 11.4 0.0 5.6 0.0 0.0 10.2 19.3 109.4
trityp 10.0 2.3 12.8 13.8 14.2 11.2 0.0 0.0 0.0 0.0 7.1 11.5 82.9
AVG 11.6 17.0 31.1 8.6 22.2 18.6 1.3 6.7 5.6 17.7 13.1 23.0 176.5

Table 5: Pro�le of Live Mutants for Data Flow Adequate Test Sets

all operator classes, indicating that the extra coverage a�orded by mutation is evenly distributed over the

kinds of faults detected by each mutation operator.

5 A FAULT DETECTION EXPERIMENT

To further asses the relative merits of the testing techniques, we inserted several faults into each of the

programs, and evaluated the test sets from section 4 based on the number of faults detected by the test sets.

So as to avoid any bias, we introduced faults according to the following two considerations:

1. faults must not be equivalent to mutants; otherwise the mutation-adequate test data would by de�nition

detect them,

2. the faults should not have a high failure rate, or the detection becomes trivial.

A general outline of our fault creation procedure is that for each program statement, we attempted to:

1. create multiple transpositions of variables,

2. modify more than one arithmetic or relational operator,

3. change precedence of operation (i.e., by changing parenthesis),

4. delete a conditional or iterative clause.

The changes were only applied when a change did not violate one of the considerations above.

To gather the results, we inserted the faults separately, creating N incorrect versions of each program.

This allowed us to always know which fault a test case detected when the faulty program failed. The data

are shown in Table 6. The Mutation column gives the number of faults detected by the mutation-adequate

test cases, averaged over the 5 sets of data for each program, and The Data Flow column gives the number

of faults detected by the data 
ow-adequate test cases, averaged over the 5 sets of data for each program.

All the mutation sets detected all the faults. Although the data 
ow-adequate test sets did not detect all

faults, they did, on average, detect 15.8 of 17, or 93% of the total faults.

11



Program Faults Mutation Data Flow
bisect 5 5.0 5.0
newton 3 3.0 3.0
secant 2 2.0 1.6
regula 3 3.0 3.0
trityp 4 4.0 3.2
TOTALS 17 17.0 15.8

Table 6: Number of Faults Found by Data Flow-Adequate and Mutation-Adequate Test Data

6 CONCLUSIONS

For our programs, the mutation scores for the data 
ow adequate test sets are reasonably high, with an

average coverage of mutation by data 
ow of 85.96%. While this implies that a program tested with the

All-uses data 
ow criterion has been tested to a level close to mutation-adequate, it may still have to be

tested further to obtain the testing strength a�orded by mutation.

The mutation adequate test data however, comes very close to covering the data 
ow criterion. The

average coverage of data 
ow by mutation is 99.88% for our �ve programs. We can infer that a program that

has been completely tested with mutation analysis methods will usually be very close to have been tested to

the All-uses data 
ow criterion.

These conclusions are supported by the faults that the test sets detected. Although the mutation-

adequate test sets detected more faults than did the data 
ow-adequate test sets, the di�erence was small.

The only program for which the mutation adequate test sets were not data 
ow adequate was regula.

Table 2 shows that the average number of test cases required for the data 
ow adequate test set for regula

is 23.8, which is slightly more than the average number of test cases required by the mutation adequate

test sets. This is not true for any other program in the sample set and may be an explanation for why

the mutation-adequate test cases were not data 
ow-adequate for regula. Indeed, this may indicate that

a principal reason why the data 
ow coverage for mutation test sets is higher than the inverse is simply

because mutation requires more test cases. Further evidence for this would have been given if the coverage

of data 
ow by mutation for regula was lower than for the other programs, but that value is 87.29, which

is in the middle for our �ve programs.

Although the ability to automatically generate test data (such as with Godzilla for mutation, or a tool

using similar techniques for data 
ow) means that requiring larger numbers of test cases is not as expensive

as if generated manually, smaller test sets will still save e�ort during regression testing. If our results can

12



be considered to be applicable to all programs, as well as the programs we investigated, then it seems that

mutation o�ers more coverage, but at a higher cost, a tradeo� that must be considered when choosing a test

methodology.

7 ACKNOWLEDGMENTS

Thanks to P. Kolte and Dr. Mary Jean Harrold for the use of Combat and the Kolte-set of square root

programs.

A APPENDIX

The complete set of mutation operators used by the Mothra mutation system is shown in Table 7. The

mutation operators used by Mothra were derived from studies of programmer errors and either correspond

to simple errors that programmers typically make or enforce common testing heuristics (such as execute every

statement). This particular set of mutation operators represents more than ten years of re�nement through

several mutation systems. The operators in this set not only require that the test data meet statement and

branch coverage criteria, extremal values criteria, and domain perturbation, but also directly model many

types of errors. Each of the 22 mutation operators is represented to by the three-letter acronym given on

the left. For example, the \array reference for array reference replacement" (aar) mutation operator causes

each array reference in a program to be replaced by each other distinct array reference in the program.

13



Type Description
aar array reference for array reference replacement
abs absolute value insertion
acr array reference for constant replacement
aor arithmetic operator replacement
asr array reference for scalar variable replacement
car constant for array reference replacement
cnr comparable array name replacement
crp constant replacement
csr constant for scalar variable replacement
der DO statement end replacement
dsa DATA statement alterations
glr GOTO label replacement
lcr logical connector replacement
ror relational operator replacement
rsr RETURN statement replacement
san statement analysis (replacement by TRAP)
sar scalar variable for array reference replacement
scr scalar for constant replacement
sdl statement deletion
src source constant replacement
svr scalar variable replacement
uoi unary operator insertion

Table 7:Mothra Mutation Operators

References

[BA82] T. A. Budd and D. Angluin. Two notions of correctness and their relation to testing. Acta
Informatica, 18(1):31{45, November 1982.

[Bud81] T. A. Budd. Mutation analysis: Ideas, examples, problems, and prospects in computer program
testing. In B. Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129{
148. North-Holland, 1981.

[CPRZ85] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data 
ow path
selection criteria. In Proceedings of the Eighth International Conference on Software Engineering,
pages 244{251, London UK, August 1985. IEEE Computer Society.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[DO91] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation. IEEE Trans-
actions on Software Engineering, 17(9):900{910, September 1991.

[FW88] P. G. Frankl and E. J. Weyuker. An applicable family of data 
ow testing criteria. IEEE
Transactions on Software Engineering, 14(10):1483{1498, October 1988.

[FW91] P. G. Frankl and S. N. Weiss. An experimental comparison of the e�ectiveness of the all-uses
and all-edges adequacy criteria. In Proceedings of the Fourth Symposium on Software Testing,
Analysis, and Veri�cation, pages 154{164, Victoria, British Columbia, Canada, October 1991.
IEEE Computer Society Press.

14



[GW85] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-Wesley Publishing
Company Inc., 3rd edition, 1985.

[HK92] M. J. Harrold and P. Kolte. Combat: A compiler based data 
ow testing system. In Proceedings
of the Tenth Annual Paci�c Northwest Software Quality Conference, pages 311{323, Portland
OR, October 1992. Lawrence and Craig.

[KO91] K. N. King and A. J. O�utt. A Fortran language system for mutation-based software testing.
Software{Practice and Experience, 21(7):685{718, July 1991.

[Mat91] Aditya P. Mathur. On the relative strengths of data 
ow and mutation based test adequacy crite-
ria. Technical report SERC-TR-94-P, Software Engineering Research Center, Purdue University,
West Lafayette IN, March 1991.

[O�92] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions on Software
Engineering Methodology, 1(1):3{18, January 1992.

[RW82] S. Rapps and E. J. Weyuker. Data 
ow analysis techniques for test data selection. In Software
Engineering 6th International Conference. IEEE Computer Society Press, 1982.

[RW85] S. Rapps and W. J. Weyuker. Selecting software test data using data 
ow information. IEEE
Transactions on Software Engineering, 11(4):367{375, April 1985.

[Wey86] E. J. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on Software
Engineering, 12:1128{1138, December 1986.

[Wey90] E. J. Weyuker. The cost of data 
ow testing: An empirical study. IEEE Transactions on Software
Engineering, 16(2):121{128, February 1990.

[Whi87] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances in Com-
puters, volume 26, pages 335{390. Academic Press, Inc, 1987.

15


