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Abstract

Decision optimization has been broadly used in many
areas including economics, finance, manufacturing, lo-
gistics, and engineering. However, optimization mod-
eling used for decision optimization presents two ma-
jor challenges. First, it requires expertise in operation
research and mathematical programming, which most
users, including software developers, engineers, busi-
ness analysts and end-users, typically do not have. Sec-
ond, optimization models are usually highly customized,
not modular, and not extensible. Sustainable Process An-
alytics Formalism (SPAF) has been recently proposed at
National Institute of Standards and Technology (NIST)
to address these challenges, by transitioning from the
redevelopment of optimization solutions from scratch
towards maintaining an extensible library of analytical
models, against which declarative optimization queries
can be asked. However, the development of practical
algorithms and a system for SPAF presents a number of
technical challenges, which have not been addressed. In
this paper we (1) propose an object-oriented extension of
SPAF, named Optimization Analytics Language (OAL);
(2) present OAL system development based on meth-
ods to reduce OAL models and queries into a formal
mathematical programming formulation; (3) showcase
OAL through a simple case study in the domain of man-
ufacturing; and (4) conduct a preliminary experimental
study to assess the overhead introduced by OAL.

1 Introduction

Making complex decisions is prevalent in various do-
mains including economics, finance, manufacturing, lo-
gistics, and engineering. For example, decisions are
made to allocate production loads of a product to dif-
ferent machines on the manufacturing floor in order to
meet demand at minimum cost, to source raw materials

from suppliers on a restricted budget, or to schedule air-
line crews to begin and end their shifts in the same city
to minimize cost. Making such decisions may involve
analyzing many complex alternatives that are beyond
human capacity to do manually. Furthermore, this often
would result in outcomes that are far from optimal.

To support decision making, enterprises turned to
Decision Support Systems (DSS) [1] and, more recently,
to Decision Guidance Systems (DGS) [2] to help with
analyzing complex problems. DSS are information sys-
tems that support decision-making by providing use-
ful information, visualization, and trends but may not
necessarily suggest actionable recommendations. DGS,
on the other hand, are a class of DSS that does provide
actionable recommendations. This often involves analyz-
ing streams of data from a variety of sources, building,
learning, and using models for prediction and what-if
analyses, and performing deterministic or stochastic op-
timization.

DGS require formal optimization models to be con-
structed and solved using Mathematical Programming
(MP) or Constraint Programming (CP) which have been
extensively studied; however, modeling an optimiza-
tion problem or a system presents two major challenges.
First, many potential users, such as process engineers
and business analysts, do not have expertise in MP/CP
modeling and optimization. Second, optimization mod-
els are typically highly customized, not modular, and
not extensible.

Moreover, building systems for optimization-based
analytics is typically a sequential, non-reusable process,
which may involve a wide span of expertise in operation
research (OR) and information technology. This process
is depicted in Figure 1 (Conventional Approach). It starts
with an OR expert modeling it. Second, it would need
to implement data collection, manipulation, and integra-
tion by IT professionals using appropriate data manage-
ment tools. IT experts may also develop end-user tools
that a business analyst can use. Third, business analysts
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Figure 1: Paradigm Shift in Development of Decision Guidance Solutions

would run the constructed problem model on collected
data using a commercial optimization solver to obtain
actionable recommendations. Finally, the process may
have to be restarted to define a modified problem since
the models are highly customized. Because of this rather
complex process, an intelligent and easier modeling ap-
proach for process engineers and business analysts is
needed to make the development of DGS much more
agile and flexible.

We address this need, in this paper, by advocating
a paradigm shift from the sequential, non-reusable ap-
proach to a more modular approach centered around
the Analytical Knowledge Base (Figure 1). The Ana-
lytical Knowledge Base (AKB) stores models that may
not necessarily be optimization models but rather mod-
els that describe an underlying physical reality such as
machines, devices, or processes. In the new paradigm,
OR experts do not need to model every decision prob-
lem faced by business users. Instead, OR experts would
create a domain-specific component library and store
it in the AKB. For example, in the domain of manufac-
turing, they would create models for processes such as
die casting, turning, gas metal arc welding, etc. Using
these component models, a business analyst, who may
be a process engineer but not an OR expert, would con-
struct a model (possibly using a Graphical User Interface
(GUD)) of a manufacturing process in terms of flow of
resources and work pieces among the machines on a
manufacturing floor. This business analyst can create a
library of various composite models, such as those for

different types of processes. Finally, a business end-user,
who may be a production operator in the manufacturing
domain, can ask a variety of declarative queries against
a model in the AKB. For example, against a manufac-
turing process model, the operator can ask: 1) given the
settings of the machines (e.g., on/off and speed) and the
load distribution among the machines, what is the total
power consumption needed to fulfill the demand; or,
2) a decision query, such as which machines should be
turned on and off, and how to setup machines’ control
settings so that the production demand will be satis-
fied at a minimal cost subject to a limitation on carbon
emissions. The new paradigm allows for modular, exten-
sible construction of models mostly by business analysts
(except for domain-specific libraries). Furthermore, it
provides the ability to easily reuse the models for the
construction of new composite models and then answer-
ing declarative queries (including what-if analysis and
optimization) posed by business end-users against the
composite models.

Sustainable Process Analytics Formalism (SPAF) [3]
was proposed at the National Institute of Standards and
Technology (NIST) to target reusability of optimization
models, which is a first step towards the new paradigm.
SPAF is comprised of two layers: the base generic Analyt-
ics Language called AL and an SPAF library with built-in
models for processes, flows, sustainability metrics and
process composition. However, the SPAF paper did not
address the problem of building an SPAF system.

In this paper, we focus on the system development



of the Optimization Analytics Language (OAL), which
is a generalized and improved form of SPAF/AL. More
specifically, the contributions of this paper are as follows.
First, we define the syntax and semantics of OAL by
generalizing the AL syntax with clean object-oriented
features of modularity, encapsulation, and inheritance.
We demonstrate OAL’s features through the use of a
manufacturing production example. Second, we de-
velop the OAL system based on the compilation of an
OAL class library and a declarative query into a formal
optimization model expressed in Optimization Program-
ming Language (OPL). This machine-generated OPL
model is solved using a commercial optimization solver,
namely IBM CPLEX. Finally, we conduct a preliminary
experimental study to compare the performance of an
OPL machine-generated model by an OAL compiler ver-
sus a manually constructed OPL model for the same
problem. This very preliminary study shows only a rela-
tively marginal run-time overhead.

The remainder of this paper is organized as follows:
In Section 2, we give a brief overall survey of decision
optimization and discuss how OAL can bridge the gap.
In Section 3, we give an overview of OAL and showcase
it via a manufacturing example. In Section 4, we present
our reduction algorithm and system implementation
architecture of OAL. In Section 5, we give results of a
preliminary experimental analysis of OAL vs. manually
generated models. We conclude in Section 6, and briefly
discuss directions for future work.

2 Related Work

Engineers and business analysts may use a variety of dif-
ferent tools to support decision-making. These tools can
be broadly classified into four categories: 1) End-User
Domain-Specific; 2) Optimization Modeling; 3) Simula-
tion Modeling; and 4) Black-box Integration.
Domain-Specific tools are designed for specific, lim-
ited tasks and typically provide a GUI that is easy to use
by end-users. The implementation may use optimiza-
tion tools and integrate them with other systems such as
Enterprise Resource Planning (ERP). Examples include
optimizing price-revenue, transportation, sourcing, and
production plans, among others (e.g., [4]; [5]). However,
this approach is not extensible, which may lead to “silo”
optimization and not achieve the global optimum.
Optimization Modeling tools typically use MP or CP
algorithms. Many classes of MP, such as linear program-
ming (LP), mixed integer linear programming (MILP),
and non-linear programming (NLP), have been very suc-
cessful in solving real-world large-scale optimization
problems. CP, on the other hand, has been broadly used
for combinatorial optimization problems like schedul-
ing and planning. To use these tools, one would have
to use an algebraic modeling language such as AMPL
[6], OPL [7], GAMS [8], or AIMMS [9]. However, as

mentioned in the introduction, MP and CP modeling
present a significant challenge for engineers and busi-
ness analysts to model. It would require an OR expert to
model a problem and express it in an algebraic modeling
language like the ones mentioned. Additionally, these
formal models are typically difficult to modify, extend,
or reuse. This is comparable to “spaghetti” code versus
an object-oriented approach.

Simulation Modeling tools allow engineers and busi-
ness analysts to accurately model a system and its in-
ner workings. It is object-oriented, modular, extensible,
and reusable. Furthermore, many simulation tools pro-
vide an easy-to-use GUI. Tools like SIMULINK [10] and
Modelica-based ones [11] like JModelica [12], Dymola
[13], and MapleSim [14] allow users to model complex
systems in mechanical, hydraulic, thermal, control, and
electrical power. Modelica comes with over 1000 generic
model components that can all be reused. However, op-
timization using simulation modeling tools amounts to
a heuristically-guided trial and error approach where
simulation serves as a black box. Simulation-based opti-
mization is significantly inferior to MP/CP optimization
in terms of optimality or quality of results and compu-
tational complexity because it does not utilize the math-
ematical structure of the underlying problem the way
MP/CP approaches do.

Lastly, Black-Box Integration tools are designed for
the intersection of simulation tools and domain-specific
tools to automate a computational process that requires
the use of unified tools or packages. They help integrate
an input to one system as an output from another us-
ing scripting or direct integration nodes as with many
manufacturing applications such as Computer Aided
Design (CAD). Engineers and business analysts can use
these tools to help arrive at decisions that may use op-
timization techniques, data-mining, and probabilistic
simulation. Among these tools are ModeFrontier [15]
and OptiY [16]; while they provide an easy-to-use GUI
for the business analyst, they present a similar issue as
simulation tools in that they do not provide a way to
arrive at a global optimal.

Based on all the decision and analysis tools discussed,
an engineer or business analyst may not be able to use
specialized OR tools without the help of an OR expert.
They may use simulation or black-box integration tools,
but arriving at a global optimization through the use of
MP and CP methods is missing. Moreover, the current
research lacks of a modeling language that is modu-
lar, extensible, and can use constructs an engineer or a
business analyst would understand. There have been
various attempts to tackle this issue; among them are
CoJava [17, 18], CoReJava [19], and Optim] [20], all of
which extend Java with optimization constructs; this
allows easier modeling for Java developers. Decision
Guidance Query Language (DGQL) [21, 22] which, in
turn, builds on the work [23, 24, 25], allows seamless
integration of optimization on the data manipulation



language SQL. However, while CoJava is a fully object-
oriented language, it requires the skills of a software
developer experienced in using Java. DGQL, on the
other hand, would be relatively easy to use by business
analysts but does not support the modular AKB-centric
modeling approach. OAL would aim to bridge that gap.

3 Optimization Analytics Language
(OAL)

The development of OAL as a modeling tool is to
achieve reusability and modularity that a business ana-
lyst or an engineer can use and understand. Reusability
is achieved through the introduction of an analytical
knowledge base that stores basic component models
that can be extended from and form a specific process
that can be re-saved. Modularity enables models to be in-
stantiated with different data and integrated with other
models by increasing coherence and reducing coupling
of model components together. The implementation of
each model is self-contained; that is, it describes a physi-
cal reality such as machines, devices, or processes.

To model decision optimization in OAL, an engineer
does not need to formulate the problem as a mathemat-
ical model. Alternatively, he may use process-flow no-
tations to describe the model. OAL allows the user to
define a generic class or specific types found in SPAF,
such as flow, flow aggregator, and process. A class is
a general term to describe any specification (i.e., a set
of properties or constraints) without any restrictions. A
flow is a special type of class that describes the input and
output of a specification. A process or sub-process is es-
sentially a class that must have the inputs and outputs in
addition to properties or constraints. A flow aggregator
aggregates the flows of an output from multiple pro-
cesses as a single input to another process. Finally, once
all the models are defined, the engineer can indicate an
optimization query, i.e., an objective function, expressed
as a statement or a declarative query to view the data.
A formal syntax and semantics has been presented in
SPAF [3].

We adopted an equational syntax of OPL for im-
plementation purposes and added semantics of object-
oriented features and specific process-flow notations,
that would help an engineer understand OAL. OPL is
an algebraic modeling language that follows a certain
mathematical structure. This structure usually defines
the data and decision variables, the objective function,
and the constraints. It is a strongly typed language that
has various operators including arithmetic, relational,
and logical. It also includes data types such as integers,
strings, with the addition of piecewise and stepwise func-
tions. OPL also supports built-in certain data structures
such as range, arrays, sets, and tuples. OPL can read
data defined internally or from an external file, make
connections to databases, and retrieve data from spread-

sheets. Since OPL is an algebraic modeling language, the
“how” of solving the formulated optimization problem
is left to an external mathematical solver. In IBM ILOG
CPLEX Optimization Studio, OPL can be used with two
optimization solvers: CPLEX for MILP or CP solver for
constraint programming. The solver can search for a
solution using complex mathematical techniques to de-
rive at an optimal solution. OAL supports all the fea-
tures discussed with the addition of the introduction of
component-based models for reusability, changeability,
and extensibility. The models can be generic classes, or
specific types such as process, flow, and flow aggregator.

3.1 OAL by Example

To explain OAL, we will introduce it through a resource
allocation example in a production plant that was pro-
posed at NIST. Depicted in Figure 2, we assume that we
have three raw external inputs to the overall production
plant that consists of seven processes. A die casting pro-
cess uses a metal powder as its input, represented as
dieCastingInput, and produces a raw metal as its out-
put. Once the die casting process produces an output, it
is fed into any of the three turning machines. Each ma-
chine has a minimum and maximum amount of through-
put as well as an associated cost to have the machine run-
ning based on the energy used. The die casting output
can flow into any of the turning machines. After the turn-
ing machines produce a part, it flows into the gas metal
arc welding process. The injection molding process
uses one of the external inputs of raw plastic, as repre-
sented in injectionMoldingInput, and produces a plas-
tic piece. The final process is threaded fastening, which
takes an external input of a bolt (threadedFastInput),
the plastic piece from the injection molding, and the
metal from the gas metal arc welding to arrive at a fin-
ished product represented as output. We can query this
OAL model to compute data, perform what-if analy-
sis, or solve a decision optimization query. Examples
include: What is the maximum throughput of turning
machine 2?; how much would it cost to run two ma-
chines as opposed to three?; or which optimal allocation
will meet demand at minimum energy cost?

To explain how this process is modeled using OAL,
assume for now that we already have a library of prede-
fined models that can be organized based on topics and
includes the known properties and equations. For ex-
ample, under a manufacturing library, we have models
that consist of die casting, turning machines, welding,
injection molding, or threaded fastening as similarly
shown in Figure 3. Each model corresponds to a process
definition that is independent of or extended from the
others. Furthermore, the built-in library has connectors
of flows and flow aggregators, each of which have defini-
tions written in OAL. Flows correspond to the arrows de-
picted in Figure 2 whereas flow aggregators correspond
to the black triangles. Given this library, the process
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constant or expression statement is basically instantiated
with a constant or an expression that is valid. Expression
statements include stepwise or piecewise functions such
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2
3

4

5
6
7
8
9

17
18
19
20
21

22

N

4

25

26

27

28

29

31
32

33

35

36

process dieCastingProc = new DieCasting{};
process turninglProc = new Turningl{};
process turning2Proc = new Turning2{};
process turning3Proc = new Turning3{};
process gasMetalArcWeldingProc =
new GasMetalArcWelding{};
process injectionMoldingProc = new InjectionMolding{};
process threadedFasteningProc = new ThrededFastening{};

{process} subProcesses = {dieCastingProc, turninglProc,
turning2Proc, turning3Proc, gasMetalArcWeldingProc,
injectionMoldingProc, threadedFasteningProc};

// Setup main flows

flow dieCastinglnput = dieCastingProc.input;

flow injectMoldinglnput = injectionMoldingProc.input;

flow threadedFastInput =
threadedFasteningProc.inThreadedBolt;

flow output = threadedFasteningProc.output;

// Setup aggregators
flowAggr dieCastingOutAggr = new flowAggr {
inputFlows = {dieCastingProc.input};
outputFlows = {turninglProc.input,
turning2Proc.input, turning3Proc.input}
+

flowAggr turningOutAggr = new flowAggr {
inputFlows = {turninglProc.output,
turning2Proc.output, turning3Proc.output};
outputFlows = {gasMetalArcWeldingProc.input}

+

float energyTotal = sum(i in subProcesses) i.energyPerHour;

}

Listing 1: Manufacturing Floor Process

as the one defined in line 14. The piecewise function is
defined into 3 breakpoints and 4 slopes. In Listing 2, the
slope begins with a positive slope of 0.2 until the first
breakpoint of 10. After the first 10 values, it slopes up to
0.25 until the second breakpoint of 60, and so on. The
piecewise starts with an offset of the points minimumThru
and initialEnergy. The last type of variable definition
is an instantiated statement, which is defined by using
three dots. The three dots indicates that data will be de-
fined at a later point when one does a model call, as we
will see later on. Furthermore, the second type of state-
ment is constraints and it can be defined either through
the use of “for all” statements or “if” statements or a
simple constraint such as the one in line 19. This con-
straint limits the minimum throughput and maximum
throughput. Lastly, a model call begins with the key-
word “new” and the name of the model, as in the case
of lines 2 and 3. On the other hand, a model statement
is typically instantiated with dots statement; it signifies

N
1N}

class DieCasting {
{flow} inputFlows = new flow{};
flow outputFlow = new flow{};

float minimumThru = 0.0;
float initialEnergy = 50.0; //kWh
float maximumThru = 150;

range sRange = 1..4;

range bRange = 1..3;

float slope[sRange] = [0.2, 0.25, 0.30, 0.5];
float break[bRange] = [10,60,100];

pwlFunction energyFunction = piecewise{slope[l] —> break][1];
slope[2] —> break[2]; slope[3] —> break[3]; slope[4]}
(minimumThru, initialEnergy);

float thru = outputFlow.unitPerHour;
minimumThru <= thru <= maximumThru;
float energyPerHour = energyFunction(thru);

float inputPerOutput[inputFlows] = [5.7];
forall(i in inputFlows)

i.unitPerHour ==
outputFlow.unitPerHour * inputPerOutput[i];

Listing 2: Diecasting Process Definition

that it will be associated with another model at a later
point when one does a model call. One interesting thing
to note is that one can refer to other model variables as
shown in Listing 2 on line 17 or 24. The syntax uses the
dot operator followed by a variable name defined in that
specific model.

In Listing 3, it shows the flow model definition with
the name class flow. Flows represent the connectors
between processes. In our example, we are interested
in how many units per hour to produce. Flow aggrega-
tors consolidate the arrows and may add a constraint as
shown in the listing. The constraint in the example is a
balancing constraint.

Since most of the processes in this example have the
same type of properties and constraints for simplification
purposes, OAL allows us to define a model that we can
extend or inherit. Listing 4 includes the updated model
definition. One can see most of the variable definitions
are instantiated with dots. The generic model has multi-
ple inputs and outputs and the parameters are not given.
To use this model, one must instantiate a model defini-
tion with extends as shown in the updated die casting
process model — Listing 5 shows how. It is defined
as a process instead of a class because we must define
an input and output whereas a class can be a generic
type. One can define new variables or constraints as
shown with flow input. This parameter can be passed
as value to baseThruMachine. Note here that all unde-
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class flow {
float unitPerHour = ?;

}

class flowAggr {
{flow} inputFlows = ...;
{flow} outputFlows = ...;
sum(i in inputFlows) i.unitPerHour ==
sum(j in outputFlows) j.unitPerHour;
}

Listing 3: Flow and Flow Aggregator Definition

class baseThruMachine {
{flow} inputFlows = ...;
flow outputFlow = ...;

float minimumThru = ..
float initialEnergy = ...;
float maximumThru = ..;

range sRange = 1..4;

range bRange = 1..3;

float slope[sRange] = ...;

float break[bRange] = ...;

pwlFunction energyFunction = piecewise{slope[1] —> break][1];
slope[2] —> break|2]; slope[3] —> break[3]; slope[4]}
(minimumThru, initialEnergy);

float thru = outputFlow.unitPerHour;
minimumThru <= thru <= maximumThru;
float energyPerHour = energyFunction(thru);

float inputPerOutput[inputFlows] = ...;
forall(i in inputFlows)

i.unitPerHour ==
outputFlow.unitPerHour * inputPerOutput]i];

Listing 4: A Base Model That Can Be Extended

fined values of class baseThruMachine must be instan-
tiated with data. For example, minimumThru that was
already defined in class baseThruMachine now has a
parameter of 0.0 of the die casting process. The other
processes of the example are defined in a similar fash-
ion and follow the same model call with different data
inputs.

So far the constructed models do not constitute an
optimization or simulation model. They merely capture
analytical knowledge about the data or constraints. OAL
allows us to do various non-trivial computations about
the data or optimization queries. In our manufacturing
example, we try to minimize the total energy using a
minimize statement. One can also define a maximize
statement or a stat command to compute a query. This
allows users to query the data or find an optimal con-

1
2
3
4
5
6
7
8
9

10
11
12

13

process DieCasting extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};

inputFlows = {input};
outputFlow = output;
minimumThru = 0.0;
initialEnergy = 50.0;
maximumThru = 150;

slope[] = [0.2, 0.25, 0.30, 0.5];
break[] = [10,60,100];
inputPerOutput[] = [5.7]

}
Listing 5: An Updated Die Casting Process Definition

class ManufacturingFloor {

process dieCastingProc = DieCasting{
input = flow{ unitPerHour = 116.85};
output = flow{ unitPerHour = 20.5};
inputFlows = {input}; outputFlow = output;
initialEnergy = 50.0;
maximumThru = 150;
slope[] = [0.2, 0.25, 0.30, 0.5];
break[] = [10,60,100];
thru = 20.5;
h

// Same for other processes ...

// Main flows as is

flow dieCastinglnput = dieCastingProc.input;

flow injectMoldinglnput = injectionMoldingProc.input;

/]

// Aggregators statements as is

float energyTotal = 371.4,

}

Listing 6: Manufacturing Floor Results

figuration. Users can also perform what-if analyses to
explore various scenarios of the problem. The query or
objective statement is always the last statement follow-
ing all model definitions. Listing 6 shows the results that
can be obtained once a minimize statement is executed.
The statement is

minimize ManufacturingFloor.energyTotal

The metrics we are interested in are unitPerHour for
each process and the total energy. As shown in the listing,
the values are passed as part of the process and the
statement of energyTotal is replaced with an optimal
parameter; and hence saved in the analytical knowledge
base for future reference.



1 class Metrics {
2 {string} names = .._;

3 {string} descreteNames = ..,;
4 float v[names] = 7;

5 int dv[descreteNames| = 7;

6

7

8

forall(n in descreteNames) v[n] == dv[n];

}

Listing 7: Base Metric Class

1 class CompositeProcess {

> {process} subProcesses = ...;

s {flowAggr} flowAggregators = ...;
4

5 {string} allMetricNames =

6 union(p in subProcesses) p.metrics.names;
7 {string} allDescreteNames =
8 union(p in subProcesses) p.metrics.descreteNames;

10 float v[n in allMetricNames] = sum(p in subProcesses,

1 smn in p.metrics.names : smn == n) p.metrics.v[n];
12 int dv[n in allDescreteNames] = sum(p in subProcesses,
13 smn in p.metrics.descreteNames : smn == n) p.metrics.dv[n];

15 Metrics m = new Metrics { v =v; dv = dv; };

16}

Listing 8: Base Composite Process Class

3.2 OAL Library

OAL comes with a built-in library of classes for reuse.
This library of classes is built manually and is augmented
with more definitions and models as they are being built.
In our example, most of the definitions can be consid-
ered part of a library for later use with other models.
Moreover, there are basic library items that make our
example easier to define; among them are metrics and
composite processes.

Metrics is a basic class that states what we are inter-
ested in minimizing or maximizing. We can compute for
competing metrics at each run to enable what-if analysis.
Specific metrics can be cost, profit, energy consumption,
COy emissions, etc. In our example, we only had one
metric, which was energy. Listing 7 lists the basic metric
class that can be extended from.

Composite process is the building block that a main
process can use to build the overall model. As was
shown in Listing 1, manufacturing floor model fol-
lows a specific format by defining sub-processes, flows,
and flow aggregators, followed by a metric to be com-
puted. Listing 8 shows the basic composite process
that the manufacturing process model can extend from.
CompositeProcess requires that you define the subpro-
cesses and flow aggregators which ManufacturingFloor
does. The general idea is that composite process would
allow easier construction of models using a GUL Assum-
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class ManufacturingFloor extends CompositeProcess {

process dieCastingProc = new DieCasting{};

process turninglProc = new Turningl{};

process turning2Proc = new Turning2{};

process turning3Proc = new Turning3{};

process gasMetalArcWeldingProc = new GasMetalArcWelding{};
process injectionMoldingProc = new InjectionMolding{};

process threadedFasteningProc = new ThrededFastening{};

subProcesses = {dieCastingProc, turninglProc, turning2Proc,
turning3Proc, gasMetalArcWeldingProc, injectionMoldingProc,
threadedFasteningProc};

// Setup main flows

flow dieCastinglnput = dieCastingProc.input;

flow injectMoldinglnput = injectionMoldingProc.input;

flow threadedFastinput = threadedFasteningProc.inThreadedBolt;
flow output = threadedFasteningProc.output;

// Setup aggregators
flowAggr dieCastingOutAggr = new flowAggr {
inputFlows = {dieCastingProc.input};
outputFlows = {turninglProc.input, turning2Proc.input,
turning3Proc.input}
i

flowAggr turningOutAggr = new flowAggr {
inputFlows = {turninglProc.output, turning2Proc.output,
turning3Proc.output};
outputFlows = {gasMetalArcWeldingProc.input}

1

}

Listing 9: Manufacturing Floor Based of CompositePro-
cess

ing one is in place, the user would only have to construct
the GUI skeleton structure similar to Figure 2 and the
code would be automatically generated as shown in List-
ing 9. The overall model is listed in Appendix A.

4 OAL System Development

The process of developing a system for OAL involves a
series of steps. Figure 4 gives a general overview of the
components that are involved. It is separated into three
main phases: Syntax Analysis, Preprocess Analysis and
Transformation, and Code Generation. A final phase is
to compile and run the translated files using IBM CPLEX
solver to perform the query that is presented in the OAL
code. Note that we can target different solvers based
on the type of problem. This is usually determined by
the number of variables, the type of variables (real, bi-
nary, integers), the constraints, and whether the objective
function is linear, quadratic, or polynomial. OAL would
need to do the analysis to determine which solver is the
best to use, but this is outside the scope of this paper.
First, the syntax analysis phase involves the use of a
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lexer and parser. The lexer, or lexical analysis, converts
a sequence of characters into tokens based on the lex-
ical grammar, i.e., rules that define the syntax of the
language. Once no errors are reported, it moves to the
second step which is the parser. The parser checks if
OAL tokens form an allowable expression or statement
according to the OAL context-free-grammar. To describe
a context-free-grammar, we make use of a language sim-
ilar to Extended Backus-Naur Form (EBNF). This EBNF
would then be translated to a source code of the compiler
that provides an abstract syntax tree (AST). The AST is
a syntactic structure of the OAL code that will be used
for the next phase. If a syntax error is found in the OAL
code, it would alert there is a syntactical error.

Secondly, the pre-process analysis and transformation
phase consists of two components: a pre-process and
reduction procedure. The reduction procedure involves
various transformations to the AST that will be discussed
in detail in the next subsection, but first a pre-process
procedure must be done to do three checks. First, it does
a number of tree traversals of the AST to do semantic
checks. Semantic checks include checking for repeated
variable names, type checking (the left and right hand of
an assignment statement must have compatible types),
the “if” conditionals must evaluate to a binary value,
and if the instantiated statements (i.e., three dots) are
accompanied with model calls that contain data. Second,

it adds keywords of decision variables and decision ex-
pressions, i.e., dvar and dexpr to the AST. A decision
variable is a variable definition of a declare statement;
this means it is assigned to a question mark. A decision
expression, on the other hand, is any variable definition
statement that includes the decision variable. This is
needed to conform to the OPL syntax. Finally, the pre-
processing procedure removes any uncalled models to
make the model compact.

The last phase is code generation, which receives two
ASTs from the reduction procedure. The first AST con-
tains the model structure and the other contains the
data. The translate component would transform the
model structure to follow the structure of all model data
and decision variables, the objective function or query
statement, then followed by the constraints found in the
models. It also checks that all the variable definitions
are defined in the data structure of the AST. It would
then generate two files, one is a model file and the other
is a data file, all of which conform to OPL syntax and
semantics. Then, we follow the algorithm presented in
Algorithm 1 and obtain a result using a CPLEX solver. It
is then presented to the user and replaces the instantia-
tion of variables with the updated solution to be saved
in a library.

Algorithm 1 OAL Query Computation
input: A OAL query My, ..., My; ¢
output: Query Result
1: Perform Reduction Procedure in Figure 5 to produce
model file (sq, ..., sy, O, C) and data
if ¢ = sat then
Solve using a MP solver without a valid objective
else
Solve using MP minimize or maximize
end if
Replace the variable instantiation that are dvars and
dexprs with updated solution

4.1 OAL Reduction Procedure to Mathemat-
ical Programming

The main component of the OAL system is the reduc-
tion component. It introduces various transformations
applied to the AST. Since OAL mostly uses OPL syn-
tax, translating most expressions is the same. However,
introducing new semantics such as class, process, and
flows, brings a few challenges to consider. Assuming the
OAL model passes syntactic (i.e., grammar rules) and
semantic checks, translating to an OPL model follows
the steps defined in Figure 5.

The process is spilt into static and dynamic parts.
Static refers to handling the model part while dynamic
deals with the data. Each model will embed itself in a
string of IDs. This string holds all IDs that this model
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has called and will be used as a handle for processing.
This is analogous to object ID that most languages have
behind the scenes. Beginning with each model, all local
basic variables (i.e., integers, strings, floats, user-defined)
along with the newly created ID will be appended with
a model name. This is to prevent variables from having
the same name that may appear in other models. This
process also includes the model statement of inputs and
outputs but will be treated as strings. The compiler then
augments each variable with a one-dimension of model
IDs. Below is an example of how a simple model is trans-
lated to OPL. This is the flow item that was defined in
the previous section.

class flow { {string} flow_IDS = ...;
float unitPerHour = 7;| | dvar float flow_unitPerHour[flow_IDS];
¥

OAL Translated OPL

In the case of a variable definition that is either a con-
stant statement or an expression statement, we append
a special dimension with an index that conforms to OPL
syntax. This index traverses through the model ID and
we add that dimension of the index to each variable
found in the expression statement. In case it is a constant
statement (i.e., one with explicit value), we just add the
dimension of index in the model ID. Below is how to
deal with the case from our previous example.

For variables that have dimensions (i.e., array type),
the translating process involves a number of steps. We
first have to expand it by utilizing a tuple definition, a
data structure that combines multiple basic variables
together and can be used to define types. In this case,
the tuple will consist of two variables: one is the model
ID and the second is the type of dimension it had. Once

10

float energyPerHour =
energyFunction(thru);

OAL

)

dexpr float bETM_energyPerHour[i in bETM_IDS] =
bETM _energyFunction[i](bETM_thruli]);

Translated OPL

-

)

we have a tuple defined, we have to create tuple index
so that it may be used for our next step. The final step
would be to augment the variable with the dimension of
the newly defined tuple index. This will have a further
effect when we come into constraints that involve vari-
ables that had a dimension. To illustrate, recall that in
the base model it had an inputPerOutput variable with
a dimension of inputFlows, and recall that inputFlows
will be treated as a string since it is a model statement
but not a model call. Below is how that OAL statement
is translated to OPL.

1| float inputPerOutput[inputFlows] = ...;
OAL

tuple bETM_inputPerOutput_t {
string ID;

string bETM_inputFlows;

};

{bETM_inputPerOutput_t} bETM_index
= { <id, i> | id in bETM_IDS, i in bETM_inputFlows[id]};

float bETM_inputPerOutput[bETM_index] = ...;
Translated OPL

Lastly in terms of different data structures, we have
set, range, and tuple definitions. Sets follow the same
logic of transformation as basic variable definitions, re-
gardless of whether they are sorted or not. For ranges,
whether they are integer or floats, the translation is not
needed but is actually taken as defined in OAL. Itis a
basic data structure that defines the lower and higher
bounds to be used as an array indexer. Lastly, tuple def-
initions are not being transformed and are taken as is
because they are defining a data type. Only if they are
used as the data type of a variable definition will the
compiler apply the variable definition rules.

The static part is now left with objective query, ex-
pression using variables that appear in other models
through the dot operator, and constraints. The objective
statement or query includes the class name followed by
a variable that appeared in that class. Since the reduction
procedure append all variables with the model name,
the objective statement or query involves a simple step



of switching the dot operator with an underscore. It
appends with a dimension that includes an actual ID.
Generating the ID is part of the dynamic process but the
objective query, along with the transformation, is shown
here for completeness.

1

minimize ManufacturingF.energyTotal; ‘

OAL

minimize ManufacturingF_energyTotal["1—33"];

Translated OPL

1

Secondly, expression using the dot operator involves
a series of steps to translate to OPL. This expression
consist of two parts other than the dot operator; a local
variable followed by the variable that appears in another
model. The local variable is the object handle of the
model and refers to a model ID. To translate to OPL, the
reduction procedure must find what is the class of the
object handle. Once that is known, it is a simple step
of re-arranging the variable and augmenting it with the
class name. It also must be augmented with a dimension
that includes the object handle. Below is a an example
that showcases this type of transformation to OPL. Recall
that outputFlow is a type of the class flow under class
baseEnergyThruMachine.

float thru = outputFlow.unitPerHour;

OAL

-

float bETM_thru[i in bETM_IDS]
= flow_unitPerHour[bETM_outputFlow(i]];

Translated OPL

-

)

As a last step in the static process, constraints are
statements that do not begin with a data type but are
comparison statements either in arithmetic, relational,
and logical to be evaluated as boolean expression. It
can include flow control using “if-else” statements or
forall statements. For each constraint found in each
OAL model, the compiler embeds a forall statement
traversing through the model IDs. The variables that
appear in a constraint statement are augmented with a
one-dimension of model IDs. If the variable already has
a dimension, it would be augmented with a dimension
of tuple that consists of a model ID and the variable that
was used. To illustrate the transformation process to
OPL, these are two constraints (See Translate 1) that were
defined in the manufacturing production example. Since
the constraints appeared in the baseEnergyThruMachine
model, they would be augmented with the IDs from that
model. This would complete the static process.

The dynamic process would start by having a dupli-
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1l minimumThru <= thru <= maximumThru;

OAL

forall(id in bETM_IDS)
bETM_minThrulid] <=
bETM_thru[id] <= bETM_maxThrul[id];

Translated OPL

-

N}

w

forall(i in inputFlows)
i.unitPerHour ==
outputFlow.unitPerHour *
inputPerOutput[i];

OAL

W N =

forall(id in bETM_IDS)

forall(i in bETM_inputFlow[id])
flow_unitPerHour[i] ==
flow_unitPerHour[bETM _outputFlow][id]] *
bETM._inputPerOutput[<id, i>];

Translated OPL

R

Translate 1: Two Constraint Transformation from OAL
to OPL

cate AST of the static one. The dynamic process would
do the following three steps for each new model call.
First, it begins the process of dynamically generating IDs
for each new model call including the objective query. It
does this by traversing the tree to reach each model dec-
laration. Once a model call is found, it generates an ID
and adds it to the list of model IDs. Second, any data that
is provided inside the model would associated with that
ID; this includes the basic data types as well as sets and
user-generated tuple types. Lastly, it would check if the
model call has passed over data. If data was passed over,
like in Listing 5, the data takes precedence and is sub-
stituted with any data that the model may have. Once
this process is done, the dynamic process traverses the
static AST and removes any data declarations with an
instantiated expression (i.e., three dots). It also adds the
ID, if necessary, to the objective query in the static AST.
While doing this process, the dynamic AST makes sure
it adheres to the correct syntax and semantics that OPL
data file has. This concludes the reduction procedure
and the process then moves on to code generation stage.
While this reduction procedure includes many cases to
consider and may seem complex, we found that the com-
piler transforms the OAL code to OPL with reasonable
run-time overhead.
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5 OAL Experimental Performance

OAL has the potential to achieve an intuitive, high-level
abstraction for modeling complex systems to arrive at
optimal decisions by engineers or business analysts. The
running time of arriving at a solution is as equally impor-
tant as modeling a problem. To model a mathematical
optimization problem, it is usually sensitive to how it
is represented; modeling it poorly may result in longer
time to find an optimal solution. While OAL is heavily
based on OPL, OAL introduces new variables and tuples
as discussed in our reduction procedure which may have
an effect on the running time. To test the overhead that
may be caused by OAL, we did an initial experimental
study by comparing the manufacturing process model
that was written in OAL and a manually constructed
OPL code of the same model, as shown in Listing 13
under Appendix C.

The OAL and OPL model were both ran using IBM
ILOG CPLEX Optimization Studio 12.4 using Java Con-
cert API. The specification of the system that was used
to conduct the experiment was a workstation running
Windows 8.1 on a 2.6GHz Core i5 “Ivy Bridge” processor
with 16GB of RAM. We parametrize the problem based
on the number of machines and measure the running
time in finding a solution for the manually constructed
OPL and the OPL by an OAL compiler. The running time
only includes the CPU time to find an optimal solution
and does not include loading from a disk or compiler
time. We randomized the parameters and ran the models
ten times each time as we increase the number of ma-
chines. We only accounted for finding feasible solutions
and ignored results that were infeasible as they were
found in under 10 milliseconds. The result is shown in
Figure 6 and 7.

As can been seen from the figure, OPL was faster
on average in arriving at an optimal solution when the
number of machines is less than 200. As we increase
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that number we see the relation is almost on bar. For
machines less than 200, we see that OAL is slower by
a factor of 16% but all solutions were under a second.
This could be related to introducing tuples as opposed
to multi-dimensional arrays. Although the amount of
code generated by OAL was greater than manually con-
structed OPL, they both had the same amount of running
time as the number of machines increases to more than
200. This could be attributed to the compiler optimiza-
tion by CPLEX solver to the resulting OAL code.

While this experiment is limited, it gave a glimpse
of OAL overhead and how closely it is related to OPL
models. It will be interesting to test on different classes
of problems than a classic resource allocation problem
such as scheduling and very large scale combinatorial
problems. Future work will investigate further with
different models to compare against and give a better
overall picture than this preliminary study.

In addition, these results do not include the compile
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time and this is heavily dependent upon the details of the
implementation. Figure 8 shows how fast the compiler
for up to 100 machines but Figure 9 shows a longer
compilation time as the number of machines increase.
The current compiler needs to be optimized for handling
large amounts of data and that will be the focus for
future implementation.

6 Conclusion & Future Work

In this paper, we have developed an Optimization An-
alytics Language that targets reusable models. We re-
fined the syntax and semantics and presented a manufac-
turing production example using OAL. The language’s
main goal is to provide easier semantics for engineers
and business analysts to easily model mathematical opti-
mization. We focused on the system development of the
language and presented techniques to reduce OAL mod-
els and queries into formal mathematical programming
problems. Finally, we conducted an initial experimental
study to demonstrate that the language’s run time when
compared with a manually constructed mathematical
model.

We consider this language to be the back-end for what
we believe could be part of our future work. Develop-
ing an easy-to-use application as a front layer would
be highly beneficial for an engineer to easily construct
decision optimization using a drag-and-drop to model
an overall process. It would be interesting to showcase a
real world problem that an engineer can easily build us-
ing this graphical user interface with OAL as the system
layer.

OAL currently relies on using a mixed integer lin-
ear programming solver to run the optimization. More
specifically, it uses CPLEX as its current solver. The
system has the potential to introduce behind the scenes
techniques to determine which solver is best for solving
the problem at hand. Moreover, it could introduce algo-
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rithms that can help optimize and speed-up processing
time.

Disclaimer

No approval or endorsement of any commercial product
by the National Institute of Standards and Technology
is intended or implied. Certain commercial software
systems are identified in this paper to facilitate under-
standing. Such identification does not imply that these
software systems are necessarily the best available for
the purpose.
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Appendix A

1 class Metrics {

2 {string} names = ...;
3 {string} descreteNames = ...;
4 float v[names] = 7;
5 int dv[descreteNames] = 7;
6
7 forall(n in descreteNames) v[n] == dv]n];
o}
9
10 class CompositeProcess {
1 {process} subProcesses = ...;
12 {flowAggr} flowAggregators = ...;
13
14 {string} allMetricNames = union(p in subProcesses) p.metrics.names;
15 {string} allDescreteNames = union(p in subProcesses) p.metrics.descreteNames;
16
17 float v[n in allMetricNames] = sum(p in subProcesses, smn in p.metrics.names : smn == n) p.metrics.v[n];
18 int dv[n in allDescreteNames| = sum(p in subProcesses, smn in p.metrics.descreteNames : smn == n) p.metrics.dv[n];
19
2 Metrics m = new Metrics { v =v; dv = dv; };
21 }
22
2 class flow {
24 float unitPerHour = 7;
25 }
26
27 class flowAggr {
2 {flow} inputFlows = ...;
2 {flow} outputFlows = ...;
30 sum(i in inputFlows) i.unitPerHour == sum(j in outputFlows) j.unitPerHour;
31 }
32
a3 class baseThruMachine {
£ {flow} inputFlows = ...;
35 flow outputFlow = ...;
36
37 float minimumThru = ..;
38 float initialEnergy = ...;
39 float maximumThru = .. ;
40
a1 range sRange = 1..4;
2 range bRange = 1..3;
3 float slope[sRange] = ...;
u float break[bRange] = ...;
45 pwlFunction energyFunction = piecewise{slope[1] —> break[1]; slope[2] —> break[2];
16 slope[3] —> break[3]; slope[4]} (minimumThru, initialEnergy);
47
18 float thru = outputFlow.unitPerHour;
29 minimumThru <= thru <= maximumThru;
50 float energyPerHour = energyFunction(thru);
51 float inputPerOutput[inputFlows] = ...;
52
53 forall(i in inputFlows)
54 i.unitPerHour == outputFlow.unitPerHour x inputPerOutput]i];
55
56 Metrics metrics = new mscMetrics{Names = {"energyPerHour" }; DescreteNames ={}};
57 metrics.v[" energyPerHour"] == energyPerHour;
58
}

Listing 10: Generic Library
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process DieCasting extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};

inputFlows = {input};
outputFlow = output;
minimumThru = 0.0;
initialEnergy = 50.0;
maximumThru = 150;

slope[] = [0.2, 0.25, 0.30, 0.5];
break[] = [10,60,100];
inputPerOutput[] = [5.7]

}

process Turningl extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};

inputFlows = {input};
outputFlow = output;
minimumThru = 0.0;
initialEnergy = 50.0;
maximumThru = 150;

slope[] = [0.2, 0.25, 0.30, 0.5];
break[] = [10,60,100];
inputPerOutput[] = [1]

process Turning2 extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};

inputFlows = {input};
outputFlow = output;
minimumThru = 0.0;
initialEnergy = 50.0;
maximumThru = 3;

slope[] = [0.15, 0.2, 0.25, 0.5];
break[] = [10,60,100];
inputPerOutput[] = [1]

}

process Turning3 extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};

inputFlows = {input};
outputFlow = output;
minimumThru = 0.0;
initialEnergy = 50.0;
maximumThru = 10;

slope[] = [0.1, 0.11, 0.12, 0.5];
break[] = [10,60,100];
inputPerOutput[] = [1]

}

process GasMetalArcWelding extends baseThruMachine {
flow input = new flow{};
flow output = new flow{};
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6 inputFlows = {input};

64 outputFlow = output;

65 minimumThru = 0.0;

66 initialEnergy = 50.0;

67 maximumThru = 150;

68 slope[] = [0.2, 0.25, 0.30, 0.5];

6 break[] = [10,60,100];

70 inputPerOutput[] = [1]

n }

72

73 process InjectionMolding extends baseThruMachine {

7 flow input = new flow{};

7 flow output = new flow{};

76

7 inputFlows = {input};

78 outputFlow = output;

79 minimumThru = 0.0;

80 initialEnergy = 50.0;

81 maximumThru = 150;

8 slope[] = [0.2, 0.25, 0.30, 0.5];

8 break[] = [10,60,100];

8 inputPerOutput[] = [1]

& }

86

s7 process ThrededFastening extends baseThruMachine {

88 flow inPlasticPart = new flow{};

8 flow inWeldPart = new flow{};

% flow inThreadedBolt = new flow{};

91 flow output = new flow{};

92

93 inputFlows = {inPlasticPart, inWeldPart, inThreadedBolt};
94 outputFlow = output;

95 minimumThru = 0.0;

9% initialEnergy = 50.0;

97 maximumThru = 150;

% slope[] = [0.2, 0.25, 0.30, 0.5];

% break[] = [11,60,100];

100 inputPerOutput[] = [1, 1, 1]

101 }

102

103 class ManufacturingFloor {

104

105 process dieCastingProc = new DieCasting{};

106 process turninglProc = new Turningl{};

107 process turning2Proc = new Turning2{};

108 process turning3Proc = new Turning3{};

109 process gasMetalArcWeldingProc = new GasMetalArcWelding{};
110 process injectionMoldingProc = new InjectionMolding{};
m process threadedFasteningProc = new ThrededFastening{};
112

113 {process} subProcesses = {dieCastingProc, turninglProc, turning2Proc,
114 turning3Proc, gasMetalArcWeldingProc, injectionMoldingProc,
115 threadedFasteningProc};

116

17 // Setup main flows

18 flow dieCastinglnput = dieCastingProc.input;

119 flow injectMoldinglnput = injectionMoldingProc.input;

120 flow threadedFastInput = threadedFasteningProc.inThreadedBolt;
121 flow output = threadedFasteningProc.output;

122

123 // Setup aggregators
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124 flowAggr dieCastingOutAggr = new flowAggr {

125 inputFlows = {dieCastingProc.input};

126 outputFlows = {turninglProc.input, turning2Proc.input, turning3Proc.input}

127 };

128

129 flowAggr turningOutAggr = new flowAggr {

130 inputFlows = {turninglProc.output, turning2Proc.output, turning3Proc.output};
131 outputFlows = {gasMetalArcWeldingProc.input}

132 4

133}

Listing 11: Domain Specific Library

Appendix B!

1 {string} flow_IDS = ...;
dvar float flow_unitPerHour[flow_IDS];

2

3

4

5 {string} flowAggr_IDS = ...;

6 {string} flowAggr_inputFlows[flowAggr_IDS] = ...;
7 {string} flowAggr_outputFlows[flowAggr_IDS] = ...;
8

o // Changed from baseEnergyThruMachine to bETM
10 {string} bETM_IDS = ..;

{string} bETM_inputFlows[bETM_IDS] = ...;
string bETM _outputFlow[bETM_IDS] = ...;

13 float bBETM_minimumThru[bETM_IDS] = ...;

11 float bETM_initialEnergy[bETM_IDS] = ..;

15 float bBETM_maximumThru[bETM_IDS] = ...;
range bETM_sRange = 1..4;

range bETM_bRange = 1..3;

1

=

1

~

[}

-
o

-
S

19 tuple bETM_slope_tuple {
20  string ID;

int bETM _sRange;
2 }

» {bETM _slope_tuple} bETM_slope_index = {<id, i> | id in bETM_IDS, i in bETM_sRange};
24 float bETM_slope[bETM_slope_index] = ...;

N

tuple bETM_break_tuple {
string ID;
23 int bETM_bRange;
2 h
30 {bETM_break_tuple} bETM_break_index = {<id, i> | id in bETM_IDS, i in bETM_bRange};
float bETM_break|[bETM _break_index] = ...;

I}
-8

&)
N

@
=2

s pwlFunction bETM_energyFunction[i in bETM_IDS] =

[
3

3 piecewise{bETM _slope[<i, 1>] —> bETM_break[<i, 1>];
35 bETM_slope[<i, 2>] —> bETM_break[<i, 2>];
36 bETM_slope[<i, 3>] —> bETM_break[<i, 3>];
- bETM_slope[<i, 4>]}

38 (bETM_minimumThru[i], bETM_initialEnergy][i]);

'S
fusd

dexpr float bETM_thru[i in bETM_IDS] = flow_unitPerHour[bETM_outputFlow]i]];
22 dexpr float bETM_energyPerHour[i in bETM_IDS] = bETM_energyFunction[i](bETM_thruli]);

Based on original example with no CompositeProcess or Metrics model
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44
45 tuple bETM_inputPerOutput_tuple {

%  string ID;

4 string bETM_inputFlows;

s}

19 {bETM_inputPerOutput_tuple} bETM_inputPerOutput_index =

50 {<id, i> | id in bETM_IDS, i in bETM_inputFlows[id]};

s1 float bETM_inputPerOutput[bETM_inputPerOutput_index] = ...;

52

53

s+ {string} DieCasting_IDS = ..;

ss string DieCasting_input[DieCasting_IDS] = ...;

s string DieCasting_output[DieCasting_IDS] = ...;

57

ss // Same for other processes ...

59

0 // Changed from ManufacturingFloor to MF

61 {string} MF_IDS = ...;

6 string MF_dieCastingProc[MF_IDS] = ...;

63 string MF_turninglProc[MF_IDS] = ..;

6+ string MF_turning2Proc[MF_IDS] = ..;

65 string MF_turning3Proc[MF_IDS] = ...;

66 string MF_turning3Proc[MF_IDS] = ..;

¢ string MF_gasMetalArcWeldingProc[MF_IDS] = ...;

e string MF_injectionMoldingProc[MF_IDS] = ...;

¢ string MF_threadedFasteningProc[MF_IDS] = ...;

7 {string} MF_subProcesses[MF_IDS] = ...;

71

72 string MF_dieCastinglnput[i in MF_IDS] = DieCasting_input[MF_dieCastingProc[i]];

7 string MF_injectMoldingInput[i in MF_IDS] = InjectionMolding_input[MF _injectionMoldingProc[i]];
7+ string MF_threadedFastInput[i in MF_IDS] = ThrededFastening_inThreadedBolt[MF _threadedFasteningProc][i]];
75 string MF_output[i in MF_IDS] = ThrededFastening_output[MF _threadedFasteningProc[i]];
76

77 string MF_dieCastingOutAggr[MF_IDS] = ...;

78 string MF_turningOutAggr[MF_IDS] = ..;

79

so dexpr float MF _energyTotal[i in MF_IDS] = sum(s in MF_subProcesses[i]) bETM_energyPerHour([s];
81

&2 minimize MF_energyTotal[" P—01"];

83

s subject to {

&5 forall(id in flowAggr_IDS)

86 sum(i in flowAggr_inputFlows[id])
8 flow_unitPerHour[i] ==

88 sum(j in flowAggr_outputFlows[id])
89 flow_unitPerHour(j];

w0 }

91

2 subject to {

s forall(id in bETM_IDS)

o4 bETM_minimumThru[id] <= bETM_thru[id] <= bETM_maximumThru[id];

% };

96

o7 subject to {

s forall(id in bETM_IDS)

9 forall(i in bETM_inputFlows[id])

100 flow_unitPerHour[i] == flow_unitPerHour[bETM _outputFlow[id]] * bETM_inputPerOutput[<id, i>];

101 };

Listing 12: Sample of Machine Generated Manufacturing Production Model in OPL
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33

38
39
40
41
42

43

Appendix C

using CPLEX;
{string} machines = ...;

float minThru[machines] = ...;
float initEnergy[machines] = ...;
float maxThru[machines] = ...;

float s[machines][1..4] = ..;
float b[machines][1..3] = ..;

pwlFunction energyFunction[m in machines] = piecewise{s[m][1] —> b[m][1];
s[m][2] —> b[m][2]; s[m][3] —> b[m][3]; s[m][4]} (minThru[m], initEnergy[m]);

dvar float thru[machines];
dexpr float energyPerHour[m in machines] = energyFunction[m](thru[m]);
dexpr float energyTotal = sum(m in machines) energyPerHour[m];

{string} inputs[machines] = ...;
{string} outputs[machines] = ...;

{string} items = union(i in machines) inputs[i] union union(m in machines) outputs[m];
dvar float unitPerHour[items];
float inputPerOutput[machines] = ...;

minimize energyTotal,

subject to {
forall(m in machines) {
minThru[m] <= thru[m] <= maxThru[m];

}

forall(m in machines)
forall(o in outputs[m]) {
thru[m] == unitPerHour[o];

}

forall(m in machines)
forall(i in inputs[m])
forall(o in outputs[m]) {
unitPerHour[i] == unitPerHour[o] * inputPerOutput[m];
}
}

Listing 13: Manually Constructed Manufacturing Production Model in OPL
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